Fautronix GmbH

When complexity seems easy.

User guide
for
Getting started with FIDEX

Guide: FX-TCN-FIDEx-UG0001
Since FIDEX revision: 2014-09.0

Revision: 0.2

Author and Copyright: Fautronix GmbH
Hegelstral3e 16
72762 Reutlingen, Germany

Website: http://www.fautronix.com

W Fautronix GmbH User guide

When complexity seems easy. Getting started with FIDEX

Table of changes

Revision Date Author Change (Page/Chapter)
0.2 2014-09-18 | Christoph Fauck | Added chapter 4, Installing and uninstalling
FIDEX

All chapter: Changed some opticals

Added chapter 7.2.4, Using multiple source
files

0.1 2014-09-12 | Christoph Fauck | Initial version

Table I: Table of changes

Table of audits

The following table shows an overview of all audits of the current document, both, in-house
audits and audits by independent quality auditors.

Auc_il'fed Date Auditor Notes
revision

0.2 2014-09-18 | Christoph Fauck

0.1 2014-09-13 | Simone Fauck

Table II: Table of audits

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 2 of 19

W Fautronix GmbH User guide

When complexity seems easy. Getting started with FIDEX

Table of content

VAV (oo g oI o T |5 PP 4
2 CoNtACt AN SUPPOIT. ... 4
3 Getting Example Projects, FIDEx and further information.............ccceeevviieiiiiiiiiiiiieee e 4
4 Installing and UNINSEAIING FIDEX..........uuuuiiiiiiiiiieiiiiiieeeeeeeeieeeeeeee et eeeeeeeeeeeeeeeeennnnn s 4
ES IO 1YL= 1 P 5
6 Te ONIINE NEIP....eeeeeeeeee et e e e e e e e e e e e e e 6
7 Starting With @ NEW PrOJECT.......ooi it e e 6
7.1 GENErating @ NEW PIOJECT....ceeiieiiiiiitiiteeeeee e e e e e sttt e e e e e e e e s st bbb e e e e e e e e s s ssebbbr e e e e e e e eaeeaeaeees 6
7.2 Adding SOUrCes 10 the PrOJEC.....cccciiei e 8
7.2.1 Starting from scratch using a SKeleton.............cooiiiiiiiiiiiiiie e 8
A N L=] (] =] (o] o PSR TRPPP 10
7.2.3 Where to find the inStruction MNEMONIC...........oiiuiiiiiiiiie e 10
7.2.4 Using multiple source files........ooooooiiii i, 10
7.2.5 Importing existent sources by using the import filter.............ccvvvviiiiieeiiiiiiiieeee, 11
8 Simulating/debugging @ PrOJECT.......cooviiiiiiiii e 12
8.1 Controlling the SIMUIALION...........uuuiiiiiiiiiie e araaesresssarsennsranrnns 13
8.2 The SIMUulators Start QdUrESS. e ittt e e e eeeeeeeeeeeeeeeeeeeeenees 13
8.3 BrEaKPOINTS. ... e e e e e aaa e eeeaaanas 14
8.4 Simulating with renamed registers and constant defined port addresses..................... 14
9 Generating output filesS Of @ PrOJECT........vuueiiii i 15
9.1 TN 1O UEVICE CONCEPL....eeeiiiieeiieiiitte et e ettt e e e e e e e e e e 15
9.2 Setting up an 10 device for our INStrUCtION MEMOIY........cvvuiiiiieeeieieiee e 16
9.3 WIriting OULPUL filE EVENTS.......euiiiiiiieeie e 17
10 Some notes about CaSE SENSILIVILY........couuiiiiiiii e e 18
11 SOME NOLES ADOUL SIIHNGS. ... utttiieiiieeei ittt e e e e e st r e e e e e e e s e e e e e e e eeeeeeeseeeennnnanes 18
12 Saving CONfIGUIAtION GaTaL. e e e e e e e e e e eeean s 18

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 3 of 19

Fautronix GmbH User guide
When complexity seems easy. Getting started with FIDEx

1 Welcome to FIDEXx

FIDEX is an integrated assembler development environment (IDE) for soft-core processors
and is developed for Linux and Windows platforms.

It enables the development of assembler code with features that are otherwise available in
high-level language toolchains only. Especially larger programs take advantage of these
features and can be developed much faster.

The aim of the development was and is to develop a maximum-performance tool which is
still simple and intuitive to use by beginners and experts similarly.

Note

We originally developed FIDEx for us and use it intensively for our own

projects. Just the time saved through the source navigator and the simula-
() tor is quite a few weeks per year. To say nothing of the increase in quality

and reduced troubleshooting due to the increased source transparency.

2 Contact and Support
If you have Questions or any suggestions or you need a special function please contact us
via

« eMail fidex@fautronix.com or

* in our accordingly forums.

3 Getting Example Projects, FIDEx and further information

FIDEx can be downloaded as a functional limited edition for free. To enable the whole
functionality an optional license has to be purchased from Fautronix.

The download link, errata and further license information are located on:
http://www.fautronix.com/fidex

The example project FX-TCN-FIDEx-UG0001-PRJ.zip generated during this starting guide
can also be downloaded from there.

4 Installing and uninstalling FIDEXx
* Installing on Microsoft Windows

For installing FIDEx on Microsoft Windows please download and run the setup binary
release for Microsoft Windows.

* Installing/Uninstalling on Linux with Debian package manager

To install FIDEx on a Linux system which is managed by a Debian package manager
like Debian or Ubuntu please download the corresponding deb files.

After Downloading please install the downloaded files using
“sudo dpkg -i FIDEx_xxxx.deb” command or by double clicking to the files and installing
using a graphical package manager frontend of your Linux distribution.

To uninstall FIDEX please run “sudo dpkg -e fidex” or use the graphical package
manager frontend of your Linux distribution.

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 4 of 19

http://www.fautronix.com/fidex

Fautronix GmbH User guide
When complexity seems easy. Getting started with FIDEx

Installing/Uninstalling on Linux with Red Hat package manager

To install FIDEx on a Linux system which is managed by a Red Hat package manager
like Red Hat, Fedora or SUSE please download the corresponding rpm files.

After Downloading please install the downloaded files using
“sudo rpm -ivh FIDEx-xxx.rpm” command or by double clicking to the files and installing
using a graphical package manager frontend of your Linux distribution.

To uninstall FIDEXx please run “sudo rpm -e fidex” or use the graphical package manager
frontend of your Linux distribution.

5 Overview

For a rapid and optimized software development FIDEx provides the following compo-
nents:

a Project manager

for combining project dependent configuration settings and source file paths relative to
the project location.

a Code editor

to write efficient assembler code and inserting templates.

a Source navigator

to keep the overview by developing and handling of larger programs.
a Multi-Pass-Assembler

for giving maximum freedom structuring your sources.

a Simulator/Debugger

to simulate the written assembler code step by step before simulating in a vhdl/verilog
simulator or test via trial and error in the hardware.

a Detailed Online Manual

to have a fast access to the processors properties and the assembler instruction
mnemonic and documentation.

Message viewer

to get efficient help on warnings and errors - the messages contains clickable links
referring to the online help

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 5 of 19

Fautronix GmbH User guide
When complexity seems easy. Getting started with FIDEx

6 The online help

Before we start with a new project, we have to look to the online help. FIDEx comes with a
detailed online help to support you by efficient writing your code.

The online help is splitted into three manuals:
* Application manual

Here you will find all about FIDEX itself and the different FIDEx modules.
« Coding manual

The coding manual contains the documentation about instructions and directives as well
as how to bring your code to the hardware.

* Processor manual

This manual contains processor specific informations like getting started instructions, the
processor resources and the mnemonic translations.

If we speak from a manual in the further document we mean the corresponding manual in
the online help.

7 Starting with a new project

To explain how FIDEx works for you we will setup an example project for the
Xilinx PicoBlaze™ 3 ') processor.

7.1 Generating a hew project

After starting FIDEx the main window shows you the currently empty source navigator on
the left side, the project manager and its online help page in the central of the window and
further an online help navigator on the right side.

To start with a new project we select the “New” tab of the Project Manager and specify a
project location using the folder button on the tab.

Since the project title will be included in the main window title and also used in the project
collection we have to specify a project title on the “New” tab also.

Now we can alternatively
* generate and open the project or
* generate and add the project to the project collection (we do)

by using the appropriate buttons.

Note

To save changed content of the project collection you have to close the
project manager by using the save button or by opening a project.

Figure 7.1-1 shows you an example project added to the project collection.

1 Xilinx PicoBlaze™ is a trademark of Xilinx Inc.

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 6 of 19

Fautronix GmbH User guide

\When complexity seems easy. Getting started with FIDEX
E'_. - FIDEX Y @&
Configuration File Edit Navigation Assembler Simulator 7 Help
DA P YDOienis W
Source Navigator Project Manager %] ~ | EQulist | Help
. The project manager
Project manager proj 9 Content | Index
The project manager is the core >~ Application manual

Z New project component to generate, open and >~ Coding manual

= close projects Getting started

— Project file: artedExample/gettingStartedExample.fidex - . > Processor manuals

< Generate a new project The Fautronix GmbH

% Project Litle: | Getting started example project For generating a new project, please

activate the "new" register card of the
project manager.

| [Generate and add project to collection || Generate and open project

5 . On this register card you have to
Project collection: define the minimum settings for a
project:

Getting started example project « a file name with its location

Version: 0.1 * a project title
Komementar: . . After setting the minimum project
Project file: ..artedExample/gettingStartedExample.fidex settings you can generate the new
project, add them to the project
Remove from collection | Offnen | collection and open it by clicking the
corresponding button on the "new"
o register card.
Save project manager configuration and close | | Cancel Open an existing project o
S v
Messages
Message “ Help link ° Source link

>- @ Loading license...
Can not find project file /home/chfauck/Workspace/PRD-00002-M_FIDEx/93_Trainings/User guides/prj0/prj0.fidex. Removing it from project collection
>~ @ Loading fonts...

|Fontsize: Mode: ‘Pro:essur. ‘Rehase: 2014-9.0 License: Professional Expire date: 2015-09-10

Figure 7.1-1: Project Manager with a project in the project collection

To open the new generated project now we can double click to the project collection entry
or press the open button of the collection entry.

After opening the new project the project manager closes and the main window shows an
empty source navigator and an empty central area.

In the messages viewer we will see that no assembler backend is registered. This means
that no processor was defined for the currently loaded project.

To define a processor we call the “Configuration — Configure...” item from menu bar and
go to the Processor tab in the opening configuration dialog. There we select the processor
we want to develop for. In this example we select “Xilinx PicoBlaze 3.

Aside to the configuration dialog page the corresponding online help page is shown (Fig-
ure 7.1-2).

After making the configuration settings we press “Apply and close” to close the configura-
tion dialog.

Now a processor was defined and FIDEx automatically assembles after closing the con-
figuration dialog. The selected processor is shown in the status bar.
Note

Configuration dialog settings are becoming valid after pressing the “Apply
and close” button only.

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 7 of 19

Fautronix GmbH User guide

\When complexity seems easy. Getting started with FIDEX
E' i FIDEx - gettingStartedExample.fidex Title: Getting started example project, Project version: 0.1) o & &
Configuration File Edit Navigation Assembler Simulator Tools Help
y i asu 1
;aaﬁ@E,'l‘ vvaD!j""i& e &
Source Navigator Configuration 0 s
. . - .
Sort order: | Document structure v “~ Processor configuration ~ Xilinx PicoBlaze 3™ config page
Bookmarks: Set | Clear | Clearall 0 Processor
F 5 Frazmasce The Xilinx Picoblaze 3™ processor is a derivate of the
Info ilin Pi Xilinx PicoBlaze™ famil
Processor: | Xilinx PicoBlaze 3 v ly.
For getting this processor please refer to page Xilinx
| Processor configuration PiccBlaze series
Sources i Processor configuration

All configuration parameter are settable by SET
Clock frequency: 80,00 & | MHz - directives. For more informatino please refer to pages
SET directives and SET directives for Xilinx PicoBlaze.

Instruction memory

Processor Processor core =
Instruction memory page size: 1024 3| kB The processor core configuration inlcudes all settings
ASM regarding the core functionality of the processor. Some
configurations must also be set by generics within the
VHDL implementation or parameters within the verilog
Assembler implementation.
- Clock frequency
EXE 2 A
v

v Configures the clock frequency the processor is driven.
The frequency is used by the simulator to calculate the

Set page default values | | Restore values Apply and close | | Abbrechen running instruction execution time.

Messages || 10 device map viewer | External program 1

Message : Help link : Source link
v- @ Assembling...
>- @ Parsing files... Show help page
>~ @ Check SET directives... Show help page
>~ @ Check Label directives... show help page
>~ @ Check ORG directives... Show help page
@ Check EQU directives... Show help page
@ No assembler backend registerd. Please select a processor. Show help page

@ Failure
@ Open project: Done

|Fontsize: Mode: ‘Pro:eswn ‘Releasa: 2014-9.0 License: Professional Expire date: 2015-09-10

Figure 7.1-2: Mai window with the opened configuration dialog

7.2 Adding sources to the project

After working through chapter 7.1, Generating a new project we have generated a new
project and defined a processor.

Since there are currently no instructions to assemble in the project so we will see an ap-
propriate error message in the message viewer.

To add new sources to the project, we have the following options:
« starting from scratch using a skeleton
* importing existent sources by using the import filter
« starting from scratch without anything (for hardliner)

The following chapters describes the above mentioned options.

7.2.1 Starting from scratch using a skeleton

If you don't have already written sources or you want to see a basic example you should
start using a skeleton.

FIDEX provides a template mechanism based on template files located within the installa-
tion directory. The template files are read and parsed during startup. So you can add your
own template files.

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 8 of 19

Fautronix GmbH User guide

\When complexity seems easy. Getting started with FIDEX
E'-- & FIDEx - gettingStartedExample.fidex Title: Getting started example project, Project version: 0.1) o & &
Configuration File Edit MNavigation Assembler Simulator To Help
Loasu 1 2 siM 1 = = , -
Lh] e B e (XD D dqm w gy @b @b @ | kST Yomr | =0 i‘] i I | pEC mEX ocT
Source Navigator code.psm 0 EQUlist | Help
Sort order: | Document structure v 1; 2 Content | Index
2 ; \navGrpBegin "Directives"
Bookmarks: | Set || Clear | Clearall 3 ; ** . v * . ¥ >~ Application manual
4 v~ Coding manual
- 5 5, j wAEE kK ke didds >~ Directives
Editor config " : 6 ; \navSep "Editor config" Formulas
Xilinx PicoBlaze core configuration 7 i ¥ i SR K " R >- Instruction set
Memory config 8 #SET tabIndent, 4 Numerics
10Device config 9 >~ Setting up memories
Register renaming 10 5 % e =
Port addresses 11 ; \nmavSep "Xilinx PicoBlaze core configuration" S_trings
2 5“‘”'“_5 12 : Getting started
T 13 #IFDEF PROC: :XPBLZE6 >~ Processor manuals
Isr 14 The Fautronix GmbH
15 #SET scrpdsize, 64 ; [64, 1
16 ; #SET PRO XPblze6: :scrpdI0Dev 10Dev: : yourDe:
17 #SET F P 6::intVector, 1623
18 #SET Pblz clkFreq, 80000000
19
20 #ELSEIF PROC: :XPBLZE3
21
22 ; #SET PROC: :XPblze3::scrpdIODev, I0Dev: :yourDev
23 #SET € clkFreq, 80000000 i ingg
24 #ENDIF &
as

<[] <>

Messages || 10 device map viewer | External program 1

Message “ Help link - Source link
>~ @ Assembling...
@ Open project: Done

|Fontsize: 9pt Mode: Insert ‘Pro:essun Xilinx PicoBlaze 3 ‘Release: 2014-9.0 License: Professional Expire date: 2015-09-10

Figure 7.2.1-1: Mai window with an inserted skeleton

To get started we first need to add an empty source file to the project. Therefore we call
the “File — New...” item from menu bar to generate a new file.

After them we call one of the “File — Save...” items from menu bar or press the Ctrl +s
short cut to save the file. We select the storage location within the project folder and press
save. Before saving we will be asked to add the new file to the project and we confirm.

Note

Only files which are added to the project are assembled by FIDEX in the or-
der in which the files are listed in the configuration dialog.

Now we have added our first empty source file to the project. The next step is to insert the
skeleton for the previous defined processor.

To insert the skeleton we call the “Edit - Insert... - Templates — Skeletons — Xilinx Pi-
coBlaze” item from menu bar. Alternatively we can reach the “Insert...” menu item from
context menu shown after clicking with the right mouse button to the editor window.

After inserting the skeleton we save the file again. FIDEx assembles automatically after
storing and the message viewer tells that there are no further errors.

Now we have written our first assembler program ;-) If you don't understand all code you
have inserted please continue reading this guide or have a look to the Coding manual.

The source navigator on the left side shows you:
* Labels
All labels positioned on the beginning of a line are shown. Indented labels are not shown

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 9 of 19

Fautronix GmbH User guide
When complexity seems easy. Getting started with FIDEx

in the source navigator.
« Additional entries
Additional entries are defined by special navigator commands located in comments.

These commands are used to define an optical structure of your source code within the
navigator. So it is possible to generate simple entries or to generate groups within the
navigator.

For more information please refer to the chapter “Source Navigator Instructions” within
the Coding manual.

By double clicking to a source navigator entry the text editor jumps to the corresponding
position within your source code.
7.2.2 The skeleton
The skeleton is splitted into two sections:
* adirective section
* an instruction section

Both can be mixed because FIDEx contains a multi-pass-assembler. So the sources are
parsed and then first all directives are assembled and then the processor instructions.

The directive section shows you a small subset of #set and #equ directives that are avail-
able. Most directives are self-explanatory. For further information please have a look to the
Coding manual.

7.2.3 Where to find the instruction mnemonic

With FIDEX it is possible to write assembler for different processor platforms using the
same assembler mnemonic.

Therefore FIDEX uses an own Assembler dialect for all processors. The chapter “Instruc-
tion set” of the Coding manual lists and describes all supported instructions and compares
them over the supported processors.

If you have already experiences with the manufacturers mnemonic of a processor please
have a look to the Processor manual. Each supported processor has a Mnemonic chapter
there where you can find the translation from the manufacturers mnemonic to the FIDEX
mnemonic.

To become familiar with FIDEX it is absolutely necessary to look over the Coding manual of
the online help.
7.2.4 Using multiple source files

FIDEXx supports the usage of multiple source files added to a project. The source files are
assembled in the order listed within the “Sources” configuration dialog page. There you
can change the order of the source files. During assembling you can see the assembling
order within the message viewer.

Note

FIDEx assembles all source files added to a project in the order defined
within the “Sources” configuration dialog page.

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 10 of 19

W Fautronix GmbH User guide

When complexity seems easy. Getting started with FIDEX

Why does FIDEx doesn't support inlcudes?

Since FIDEx manages all source files as part of a project there is no need to deal with in-
cludes.

For including “inline code” like in C FIDEXx will support macros in a later release.

7.2.5 Importing existent sources by using the import filter
FIDEX provides an import filter to import existing sources from 3™ party manufacturers.

To import an existing source please call the “File — Import files...” item from menu bar to
open the “Import files” dialog and its corresponding online help page.

To import your source files please read the shown online help page for further instructions.

Note

The import filter conversion stops with a message in the message window
if an error occurs.

Before you use the conversion results please convince yourself that the
conversion process is complete.

EE. & FIDExX - gettingStartedExample.fidex (Title: Getting started example project, Project version: 0.1) EIMCINES
Configuration File Edit Navigation Assembler Simulster Tools Help
g : s 45H 1 2 5 sim 1 = - o o~
DAk ¥ D@ g 88 g) | IE0 Y T eec e oo
Source Navigator code.psm | Import files [x] Z EQUlist | Help
Sort order: | Document structure Import Files Import tiles Content | Index
Bookmarks: | Set || Clear | | Clearall FIDEx supports the import of different >~ Application manual
Diredti Source file assembler instructions and coding >~ Coding manual
v~ Directives)
Editor config Source file: nerung/XPBlze/asmTest/Xilinx_xpblze3/asmTest.psm = ;It;‘l.e:; s prenvides s i porl ler > Ss;?:i;:arlrwtaen‘:lats
Xilinx PicoBlaze core configuration e 3 The Fautronix GmbH
Memory config Tabspace: (4 | Syntax: Xilinx M The code to import is parsed and
10Device config Imports Xilinx PicoBlaze assembler code From Xilinx converted to the Idevix assembler by
Register renaming applying filter rules line by line. The
Port addresses 2 al import filter are located in a separate
v-Sources 3 main: 9 directore an may be user adaptable.
main: 4 & . =
o M Converting a file
i <)< > | -
The import may be done by doing the
| Restart | | Convert line | | Convertall following steps:
ST 1. Selecting a source file to import
Destination file
2. Selecting an import filter
. ~
e 3. Adjusting tab spaces for
A accurate viewing of the source
; S R——— ':I and destination code
3 main] | 4. Convert the source code into
~ destination code
v
o manually line by line
= < completely at one time -~
v
Messages | 10 device map viewer External program 1
Message “Help link Source link
>~ @ Assembling...
Open project: Done
|Font size: 9pt Mode: Insert ‘ Processor: Xilinx PicoBlaze 3 ‘ Release: 2014-9.0 License: Professional Expiredate: 2015-09-10

Figure 7.2.5-1: Main window with import filter dialog

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 11 of 19

User guide
Getting started with FIDEXx

Fautronix GmbH

When complexity seems easy.

8 Simulating/debugging a project

For debugging purposes FIDEx contains a powerful simulator for each supported proces-
sor.

To start the simulator for the defined processor please call the “Simulator — Enable/dis-
able simulator” item from menu bar.

E'-' i FIDEx - gettingStartedExample.fidex Title: Getting started example project, Project version: 0.1) o & &
Configuration File Edit Navigation Assembler Simulator T Help
2 g £ T ASM 1 2 S1M I = =) , -
LA Bk X DO e %A g ey (12 (T T oeconex oo
Source Navigator | Processor core B code.psm €© | EQulist | Help | Processor ports
pC: PAGED ﬁ; 2| || m Fifo ~ | | Hinzufiigen | | Removesall
Carry 0 Zero 0 Int [l ﬁi Addr: I3l busaddr_dbg
i e Out v 33 wr + 0 r
s 00 = . ‘addr: [l busAddr_intReg
— 118 ; Interrupt service routine R 33 10]0]1]1|MO0joj1§1 o
s3 00 119
g 0 120 isr:
s5 | 00 121
6 00 6x802(122 rdPrt reg work, busAddr_intReg
ST 00 6x003(123 wrPrt reg work, busAddr_dbg
i 0 124
59 | 00 125
sA | 00 it
sB | 00 i
sC| 00 0x004|128 ret] enable
sD | 00 129
sE 00 130 #0RG addr, Ox3FF
sF 33 reg_work 0x3FF|131 jump isr
132
Ox00 00 00 00 00 0O 00 00 OC~ 153 ; ; e ;
OX0B 00 00 00 0D 00 00 00 OC 134 . \navGrpEnd
Ox10 00 00 00 00 00 00 00 OC 135 . *kwsrres - :
Ox18 00 00 00 00 00 00 00 OC ' -~ U
0x20 00 00 00 00 00 00 00 OC~ v
Ox28 0000 00 00 00 00 00 oc¥ | | <[]

Messages | 10 device map viewer | Externalprogram1 | Processor callstack

Level - Program counter - Carry flag - Zeroflag - Called label
0 1 0 0 ISR

Fontsize: 9pt Mode: Insert‘valueformit: HEX Clock count: 20 clocks Time count: 250 ns | Loschen ‘Rehase: 2014-9.0 License: Professional Expire date: 2015-09-10

Figure 8-1: Main window with simulator

The simulator starts and shows interactive processor elements as well as the ports around
the central area:

» the processor core on the left side

The processor core contains the program counter (PC) of the processor, the carry and
zero flags as well as the clickable interrupt flag. It contains the register banks and the
internal scratch pad memory.

» the processor call stack
The processor call stack shows you the return parameter for the next return instruction.
 the processor ports

The most processors have a port to communicate with surrounding FPGA logic like
registers, FIFOs or memories.

In this area you can add such devices, assign addresses and show respectively
manipulate port values.

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 12 of 19

Fautronix GmbH User guide
When complexity seems easy. Getting started with FIDEx

8.1 Controlling the simulation

The simulation can be controlled using the menu bar or the tool bar. The following table
shows the tool bar icons with its functionality.

Tool bar icon

Function description

SIM Enables and disables the simulator. Each button press toggles the
@ simulator enable state.
RST Resets the simulator. All simulator components are cleared and the
program counter will be set to the defined start address. See chapter
8.2, The simulators start address for more information.
I‘ Sets the program counter to the address defined by the current cursor
PC position of the text editor.
Assigns an interrupt to the simulator.
INT : >
— Run simulator in endless mode.
7 Simulates the next instruction. If the instruction is a call, the complete call
[] will be simulated until the call stack reaches the originally level at the
beginning of the simulation step.
[\V] Simulates the next instruction.
[q Simulates until the next return instruction.
7o Simulates until the address defined by the current cursor position in the
I text editor.

DEC HEX OCT

Sets all simulator values to decimal, hexadecimal or octal.

Table 8.1.1: Controlling the simulation using the tool bar

8.2 The simulators start address
The simulators start address can be defined by three approaches:

* No explicit definition. The simulators start address is the processors start address.

« Set the simulators start address actively from current cursor position in the text edi-
tor described in chapter 8.1, Controlling the simulation.

« Define a new start address using the right mouse button context menu of the text
editors left margin (Figure 8.2-1).

* If you change your code with enabled simulator and save your changes, the code
will be assembled again. The simulator automatically gets the new assembled code
and try to set the program pointer to the last position to continue the simulation. So
you can make changes on-the-fly if you found a bug during simulation.

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 13 of 19

Fautronix GmbH User guide

When complexity seems easy. Getting started with FIDEX
F FIDEx - gettingStartedExample.fidex (Title: Getting started example project, Project version: 0.1) & &) &
Configuration File Edit Mavigation Assembler Simulator Tools Help
y 4 A5M 1 27 sM 1 = A) 4 -
DABE Y XDO e« " %W g sr o 1= K (T o uex oo
Source Navigator | Processor core code.psm €© EQUlist | Help | Processor ports
pC: PAGED ‘ 111 2| | || Fifo v || Add | | Removeall
Carry 0 Zero 0 Int l . Set simulator breakpoink Addr: busAddr_dbg ~
.ClearallsimulaturbreakpuintsuFths(urrentﬁle Out ¥ 33 wr + o
sﬂ gg . Clear all simulater breakpeints 033
-1
s2 00 Set simulator start address to this line
s3 00
s4 00 Set simulator start address to processor default
s5 00
Set bookmark
6| 00 . < et work, busAddr_intReg
s7 00 ||| M clar all bookmarks of the current file work, busAddr_dbg
s8 00 | -
<9 00 I clar all bookmarks
e 00 126 700 your statf here
sB 00 127 2
==y 00 0x004|128 retI enable
By 2 129 o
sE 00 130 #0ORG addr, 0x3FF >
sF 33 reg_work Ox3ff|131 jump isr In 33 jojoj1]1@ojo]1|1 o
132
0X00 00 00 00 00 00 00 00 OC~ 133 : .
0x08 00 00 00 00 00 00 00 OC[] 134 ; \navGrpEnd
0x10 00 00 00 00 00 00 00 OCf 135 A] - R " . R S L
0x18 00 00 00 00 00 00 00 OC~ ~ ~
0x20 00 00 00 00 00 00 00 OCY <[1< >

Messages | 10 device map viewer | Externalprogram1 | Processor callstack

Message : Help link Source link
>- @ Assembling...
& Open project: Done
An |0 device was added to read. Please type in your value. Show help page gettingStartedExample/code.psm#122

Fontsize: 9pt Mode: Insert ‘ Value format: HEX Clock count: 8 clocks Time count: 100 ns | Clear ‘Rehase: 2014-9.0 License: Professional Expire date: 2015-09-10

Figure 8.2-1: Context menu of the editors left margin

8.3 Breakpoints

Simulations are interrupted by the following conditions:
* manually set breakpoints

Using the context menu of the editors left margin as shown in Figure 8.2-1. You can
individually set breakpoints. If a breakpoint is not placed into a line containing an
instruction, the breakpoint will be applied to the next following instruction.

 implicit breakpoints

If the simulator tries to read from a port address that is not served by a simulator port
component, the simulator stops and adds a red colored register component with the
requested address to the processors port area. Within the message window you will get
the hint to define a register value to read. After them you can continue the simulation
manually.

8.4 Simulating with renamed registers and constant defined port
addresses

One of the most popular features of FIDEX is the ability to show the names of renamed
registers and constant defined port addresses by accessing a simulation component.

In Figure 8.2-1 you can see

« the register name “reg_work” by accessing the register sF in the simulators register
component

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 14 of 19

Fautronix GmbH User guide
When complexity seems easy. Getting started with FIDEx

* the name of the constants “busAddr_intReg” and “busAddr_dbg” used to access the
ports in the simulators port components.

9 Generating output files of a project

After writing a program with successful simulation in the simulator it's time to tell how to
bring the assembled program to the hardware.

To do this FIDEx supports multiple types of output files and mechanisms:
« Generation of MEM or HEX files

* Generation of VHDL or Verilog files by reading and replacing tags of a appropriate
template file.

For information how to setup a template file manually please read chapter “Setting up
memories” of the coding manual.

If you use a Xilinx PicoBlaze processor you will find an appropriate template file within the
PicoBlaze package down loadable from Xilinx.

For this example we use our own template file. You will find it in the sources of this getting
started example. It contains additional tags for VHDL/Verilog documentation using doxy-
gen.

9.1 The IO device concept

Before we start to generate output files we have to talk about the FIDEx 10 device con-
cept. It is described in detail in the “Setting up memories” chapter of the Coding manual.

An 10 device is a black box representing a part of your logic design. This can currently be
e aregister,
e aFIFOor
* a Memory block.

In the future this list will be extended by script based devices or by socket devices to han-
dle communications between multiple FIDEX instances to simulate multiprocessor designs.

So an 10 device can be used
« toinitialize a port component or the processors internal scratch pad in the simulator,
* to initialize one or more block rams via VHDL or Verilog or
* to generate a HEX or MEM file for block ram or external flash initializations.

Note
All output files that FIDEx can generate are feed from an IO device.

An 10 device will be feed with its configuration and its values. These values can be an ini-
tial value replaced by individual values from instruction memory and arbitrary set values,
alternatively or combined. Figure 9.1-1 shows the IO device concept.

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 15 of 19

Fautronix GmbH User guide
When complexity seems easy. Getting started with FIDEx

|ODevice |][||::> I]I]I:> WHDL file

configuration
|][I|::> Verilog file
Instruction I::H"‘: :
|ODevice
values 00
= > HEX file

Arbitrary
values I]I]I::> I][II::> MEM file

v

Simulator component

Figure 9.1-1: 10 device concept

9.2 Setting up an IO device for our instruction memory

Now we have seen some basics about IO devices and we can start to generate some out-
put files from our example project.

The IO device we need for the instruction memory can be setup
« implicitly by using the configuration dialog only or
« explicitly by using #set directives.

If you don't instantiate an 10O device using #set directives FIDEx generates a default one
for you. The output files connected to this default IO device are configured in the configu-
ration dialog only.

Since the skeleton already contains two 10 devices, one for the instruction memory and
one for simulation of a FIFO and we want to have a maximum of freedom we decide to use
explicit 1O devices defined by #set directives.

You can see the defined IO devices in the 10 device viewer, located in the bottom area of
the main window. Figure 9.2-1 shows the 10 device viewer of our example project. You can
see the the pageO device as well as the rxFIFO device.

By moving the mouse over the device graphs the content value of the corresponding ad-
dress is shown. By double clicking to the graph, the text editor jumps to the directive which
defines the double clicked device address.

Please double click to the white space representing the initial values of the pageO graph.
The editor jJumps to the corresponding #set directives. In Figure 9.2-1 shows the 10 device
definition of the instruction memory. The most directives are self-explanatory. For further
information please refer to chapter “Setting up memories” of the Coding manual.

Now we comment in the code lines for the VHDL and the HEX output files. In Figure 9.2-1
you will see how to set the directives.

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 16 of 19

W Fautronix GmbH User guide

When complexity seems easy. Getting started with FIDEX

E:I) FIDEx - gettingStartedExample.fidex (Title: Getting started example project (FX-TCN-FIDEx-UG0001-PRJ), Project version: 0.1)
Configuration File Edit Navigation Assembler Simulator Tools Help

B LB Pk XDO e BB G 2w 27N 4T o oo

14
[)
(x

Source Navigator code.psm © EQulist | Help
Sort order: | Document structure v 32 #set instmen: pageSize, 1024 21| content || Index
e 33 #set pageCount, 1
Bookmarks: | Set || Clear | | Clearall 34 #set ins sharedMemLocation, hiMem i [hiMen > - Application manual
_ . 35 >~ Coding manual
¥~ Set directives 36 #set en, rue Getting started
Editor config X . 37 #set type me ; [mem >~ Processor manuals
Xilinx PicoBlaze core configuration 38 #set size, 1024 ; Multip] The Fautronix GmbH
Instruction memery config 39 #set baseAddr, 0x00
rxFIFOQ 40 #set ioD simEn, false
v- Constants 41 #set ioD simAccessMode,
retVals 42
v-Hardware renamings 43 #set ioDev ef::initValue, exoeee8 ; Initia
Register renaming 44
Port addresses 45 #set ioD value,
Memory addresses 46
main: 47 #set ioD ::whd1En, true
v~ fifoHandling 48 #set vhd1EntityName, "myEntity”
rxFifoData: 49 #set vhdlTmplFile, "ROM_lpage form.vhd"
v~ Interrupt handling 50 #set vhdlTargetFile, "myProg.vhd"
isr: 51
52 ; #set ioDev::page0::y true
53 ; #set i "verilogPblzeRom"
54 ; #set i p i
55 ; #set ioDev::p e getFile
56
<)
| Messages | 10 device map viewer || External program 1 |
Legend: M Init value M Page value M Shared range value s
Device name Memory map Device summary
Size: 1024 Instructions
ioDev:paged Summary instruction count: 18 Instructions
Shared range instruction count: 0 Instructions
Size: 32 Instructions
ioDevzrxFIFO Summary instruction count: 16 Instructions
Shared range instruction count: 0 Instructions C

|Fontsixe: 9pt Mode: Insert | Processor: Xilinx PicoBlaze 3 | Release: 2014-3.0 License: Professional Expire date: 2015-09-12

Figure 9.2-1: 10 device viewer

9.3 Writing output file events

Now we have setup a project, successful simulated the project and setup IO devices for
out instruction memory and a FIFO for simulation purposes.

To induce FIDEX to write the previous defined output files we have to couple the file type of
each file to a file write event.

This can only be done in the configuration dialog on the Assembler configuration page.
Figure 9.3-1 shows the “Output file configuration” section of the assembler configuration
page.

In the upper range you can see a matrix of file write events and output file types. There

you can connect the writing of an output file type to one of the two buttons (encircled red)
or the saving event of a source file.

Now you are ready to use FIDEXx for your own project.

FX-TCN-FIDEx-UG0001, Version: 0.2 Page 17 of 19

W Fautronix GmbH User guide

When complexity seems easy. Getting started with FIDEX

E:i & FIDEx - gettingStartedExample.fidex (Title: Getting started example project, Project version: 0.1) AR

Configuration File Edit MNavigation Assembler Simulator Togh
DLAE Y% XD«

Source Navigator code.psm | Configuration o A

Sort order: | Document structure v o File write events ol Assembler config page
Bookmarks: | Set || Clear | Clearall o Events: Button 1 Button 2 After saving The assembler configuration page provides facilities to
— : T control the assembling and the mechanisms writing =
¥ SEt:éTECt'VESf. Info WAL) 4 — instruction code and preset memory contents to the
itor config - S targets.
Xilinx PicoBlaze core configuration Write verilog files: ol 4 — £ai
Instruction memory config D Write hex files: v v & 2 . The coverage of the configuration possibilities
nFIFo writ Files: v | Q- of this page is a minimal configuration to
Y~ Constants % TLemamres * > - getting started! The usage of SET directives
retVals , oes u provides more access to all available
¥~ Hardware renamings VHDL output file configuration parameters. For more
';29':5'-:; renaming @ 1 Information please refer to page SET
IEacrrasses Enable: directives.
Memory addresses =
main:) Processor Entity name: -1 Character set
v- fifoHandling
rxFifoData: ASM Template file: - Selects the default character set used to convert
v Interrupt handling strings from standard utf-16 format into a byte based
isr: o format. The charsets to be select depends on the used
Output file:
Assembler D " operating system. For mere Information please refer to
page SET directives.
Verilog output file =
EXE ~ i i A Assembler behavior
M Enable: = he The assembler behavior controls the usage and
| Set page default values | | Restore values Apply and close | | Cancel overwriting of the following directives. 2
Nafault chareat hahaviar
Messages 10 device map viewer | External program 1
Message “Help link - Source link
>~ @ Assembling...
Open project: Done
|Fonl size: 9pt Mode: Insert ‘ Processor: Xilinx PicoBlaze 3 ‘ Release: 2014-9.0 License: Professional Expire date: 2015-09-10

Figure 9.3-1: Assembler configuration dialog page

10 Some notes about case sensitivity

FIDEx parses your code case insensitive with the following exceptions:
* Labels are case sensitive
« The names defined in equ directives are case sensitive

11 Some notes about strings

FIDEX supports the usage of strings with default character set and string specific character
set defined as attribute.

Please refer to chapter “Strings” of the coding manual.

12 Saving configuration data
FIDEX has to save some configuration data. Therefore two locations are used:

« the users home directory for storing project independent application configuration
data,

» the project file for storing project dependent configuration data.

On Microsoft Windows platforms FIDEx doesn't save its configuration data into the Win-
dows registry!

FX-TCN-FIDEx-UG0001, Version: 0.2 Page 18 of 19

Fautronix GmbH User guide
When complexity seems easy. Getting started with FIDEx

List of tables

Table I: Table Of CRANGES........ooo s 2
Table [1: Table Of QUAITS.cooiiiee s 2
Table 8.1.I: Controlling the simulation using the tool bar............cccccoiiiiii 13

List of figures

Figure 7.1-1: Project Manager with a project in the project collection.............ccccoocuiiiiiinnnnns 7
Figure 7.1-2: Mai window with the opened configuration dialog...........cccccvvviiiiiiiiiiiiiiiiinnnnn. 8
Figure 7.2.1-1: Mai window with an inserted Skeleton............ccccciiiiiiiieeie s 9
Figure 7.2.5-1: Main window with import filter dialog.............ooooi 11
Figure 8-1: Main window With SIMUIALOT. ..ot 12
Figure 8.2-1: Context menu of the editors left margin...........ccccccoiiiiiiiiiiiee 14
Figure 9.1-1: 10O dEVICE CONCEPL.....uuuiiiiiieeeiiiiiiitie et ee e e e s sttt e e e e e s e st e e e e e e e e s s ansaseeennnanes 16
FIQUre 9.2-1: 10 UEVICE VIBWENceeiiiiiiitieee e ettt e e e e e e e e e e ennnenaenns 17
Figure 9.3-1: Assembler configuration dialog Page...........cceeeeeiiiiiiiiiiiiiiiieee e 18

FX-TCN-FIDEx-UGO0001, Version: 0.2 Page 19 of 19

	1 Welcome to FIDEx
	2 Contact and Support
	3 Getting Example Projects, FIDEx and further information
	4 Installing and uninstalling FIDEx
	5 Overview
	6 The online help
	7 Starting with a new project
	7.1 Generating a new project
	7.2 Adding sources to the project
	7.2.1 Starting from scratch using a skeleton
	7.2.2 The skeleton
	7.2.3 Where to find the instruction mnemonic
	7.2.4 Using multiple source files
	7.2.5 Importing existent sources by using the import filter

	8 Simulating/debugging a project
	8.1 Controlling the simulation
	8.2 The simulators start address
	8.3 Breakpoints
	8.4 Simulating with renamed registers and constant defined port addresses

	9 Generating output files of a project
	9.1 The IO device concept
	9.2 Setting up an IO device for our instruction memory
	9.3 Writing output file events

	10 Some notes about case sensitivity
	11 Some notes about strings
	12 Saving configuration data

